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SUMMARY & PURPOSE 

 The purpose of the tutorial is to illustrate with several real-world examples the power of statistical 

modeling to provide insight into product reliability performance of repairable systems and thereby help 

identify factors contributing to reliability. Also, we show how incorrect modeling of repairable system field 

data using analysis methods for repairable units can mislead and result in incorrect actions to remedy 

developing reliability issues.  
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1. INTRODUCTION 

A repairable system, as the name implies, is a system which 

can be restored to an operating condition in the event of a 

failure. The restoration involves any manual or automated 

action other than replacing the entire system. Common 

examples of repairable systems include computer servers, 

network routers, printers, automobiles, locomotives, etc. 

Although repairable systems are common, the techniques for 

analyzing repairable systems are not as prevalent as those for 

non-repairable systems.  

This tutorial provides several real-world examples of the 

power of statistical modeling of recurrence data to provide 

insight into product reliability performance and thereby help 

identify factors contributing to reliability issues. Also, we 

show how incorrect modeling of repairable system field data 

using analysis methods for non-repairable units can mislead 

and result in incorrect actions to remedy reliability issues.  

1.1 Notation and Acronyms 

ARR  annualized recurrence rate 

NTF no trouble found 

MTBF  mean time between failures 

MCF mean cumulative function 

MLE maximum likelihood estimation 

RR recurrence rate 

ROCOF rate of occurrence of failures 

HPP homogeneous Poisson process 

SER soft error rates 

2. REPORTS AND INVESTIGATION OF FIELD FAILURES 

In 1999 a large manufacturer of servers began experiencing 

field failures in a new product line. The failures were sudden, 

unexpected, and could cause the system to shut down 

abruptly (referred to as a “panic”). Engineers spent 

considerable efforts to restore systems to operation and to 

prevent recurrence. Boards experiencing a failure were 

replaced and returned to the company for analysis. Extensive 

data logging of conditions at the time of the failure were 

recorded and reviewed.  

It is helpful to understand the physical characteristics of a 

system board in a server. The boards are approximately 2’x2’ 

in size and weight around 30 pounds. The typical cost of a 

board was about $100,000. There are thousands of pins 

involved in a board connection to a system chassis. So 

removal and replacement of a board is not a trivial matter and 

must be done carefully, especially to avoid bent pins. The 

boards that experienced a failure were removed and returned 

for analysis to the factory. Damage in transit was not 

uncommon. After analysis, over 95% of the returned boards 

were classified as “no trouble found” (NTF), that is, the 

failure was not reproducible and no physical evidence of the 

failure could be found. The boards were fully functional. 

Also, 5% of the boards were often damaged in transit, which 

added to repair costs. 
There were wide-ranging actions to identify the cause of the 

failures. There was extensive stressing and testing of new and 

returned boards in systems. There was physical failure analysis 

of returned boards. In the field, there was replacement of 

failed boards with new boards. There were visits by engineers 

and management to customer sites for observations of the 

systems and environment. There were field environmental 

measurements (temperature, humidity, etc.). There was data 

logging activity using diagnostic software runs.  There was 

consultation with suppliers and frequent reviews and update 

meetings of teams of engineers and management. 

3. FAILURE MODE IDENTIFIED 

After months of research, the failure mode was identified as 

parity errors in e-cache (external, L2) SRAMS as the problem 

location but determining the exact cause was elusive.  See 

Figure 1. 

 

 
Figure 1. Primary Storage in Servers 

 

There was slow progress in isolating the causes of the 

failures, which continued in the field. The service engineers 

worked diligently to diagnose failures and restore the systems 

to operation. The costs of field repairs escalated. Customers 

demanded prompt resolution. 

4. FIELD FAILURE DATA 

A data collection team was formed to collect data on field 

failures. Reliability data was collected from major customers’ 

datacenters. The importance of acquiring time dependent data 

was emphasized. The data showed that some customers 

experienced no failures. Other customers saw high levels of 

failures for the same systems. One customer in a concrete vault 

below ground saw no failures. Other customers in high altitude 

environments (e.g., observation stations) had more frequent 

failures. Was altitude or barometric pressure a factor? 

Additionally, the data showed application dependence on the 

rate of occurrence of failures (ROCOF). In the same 

datacenter, customers running different applications on 

identical systems experienced widely different ROCOFs. See 

Figure 2., which shows a the annualized repair rates (ARR) for 

four different applications running on 476 systems in a single 

datacenter. 

Also, in the same datacenter, for identical systems running 

the same applications over the same time period, there could 

be systems with no failures, some with single failures, and 

some with multiple failures. See Figure 3 which shows the 

distribution of failures over 101 days on 48 systems running 

the same application. 
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Figure 2. ARR versus Application in One Datacenter 

Could statistical analysis and modeling of the data provide 

any insights into the cause? How could the application 

dependence be explained? Could the model agree with field 

behavior and predict future failures? Could we explain the 

distribution of failures across systems in a datacenter? 

 
Figure 3. Failures Distribution Across Systems 

5.MODELING REPAIRABLE SYSTEMS 

There are two key reliability measures for repairable 

systems: times between repairs (interarrival times) and number 

of repairs over time. Reliability is a function of many factors, 

including basic system design, operating conditions, 

environment, applications, software robustness, types of 

repairs, quality of repairs, materials used, suppliers, and 

human behavior.  

System age is the total running hours, that is the elapsed time 

on a system starting at installation turn-on. Age is often called 

the uptime. We must be careful to distinguish system age from 

times between failures (interarrival times) and device-hours or 

unit-hours.  

An important property of repairable systems is that failures 

occur sequentially in time. If the times between successive 

failures are increasing, then the system reliability is improving, 

Conversely, if the times between failures are decreasing, then 

the reliability of the system is degrading.  Thus, the sequence 

of system failures times can be very informative. If the times 

show no trend (relatively stable), the system is neither 

improving or degrading, a characteristic of what is called a 

renewal process.  

In modeling system reliability, there are some critical 

questions. For a renewal process, the times between failures 

are independent and identically distributed (i.i.d.) observations 

from a single population. How can we verify such an 

assumption? In a renewal process, there is no trend. For a 

system, restoration to “like new,” such as replacement of a 

failed component with one from same population, implies a 

renewal process (i.i.d.). There are statistical tests to check the 

assumption of a renewal process.
1
  

Unfortunately, age related data is typically not available for 

systems. Field reliability data is often presented in terms of a 

mean time between failure, MTBF. It is much easier to count 

the numbers of failures in a given time period (e.g., one 

month) for a group of systems operating for that time period 

than it is to obtain the system installation dates to measure age 

and the time dependent history of the ages of failures. Are 

there other ways to model the field behavior? 

For modeling, two variables are of key interest: M(t) the 

mean number of repairs by time t, that is, the MCF and T(k) 

the time to reach the k
th

 failure. For a renewal process, M(t), 

the MCF, is also called the renewal function, which is the 

expected (or average) value of N(t), the number of repairs by 

time t for a single system. 

 For a renewal process, the single distribution of failure 

times between repairs defines the expected pattern of repairs. 

Let Xi  denote the interarrival time between the i
th

 and the (i-1) 

repair. The time to the k
th

 repair can be written as the sum of k 

interarrival times. 

 

 

For example, if the first three interarrival times are 100, 150, 

and 75 hours, then the time to the third repair is 100+150+75 

= 325 hours. Knowing the probability distribution (pdf) of Xi, 

we can theoretically find distributions for N(t) and T(k) along 

with M(t) and the renewal or recurrence rate (ROCOF) m(t) = 

dM(t)/dt. 

Suppose the interarrival times Xi are i.i.d. with exponential 

probability density function (pdf) having constant failure rate 

intensity , that is, 

 

 

Then, we can show that N(t) has a Poisson distribution with 

constant renewal rate intensity . The expected number of 

repairs in time t is t. Note that  is a rate (i.e., repairs/time) 

that is multiplied by time t to give the number of repairs by 

time t. Consequently, the probability of observing exactly N(t) 

= k failures in the interval (0,t) is given by the Poisson 

distribution 

 

 

 

We call this renewal process for which the interarrival times 

are exponentially distributed a homogeneous Poisson process 

(HPP). 

For a HPP, the mean time between failures (MTBF) is 

constant and  
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The expected number of repairs in time t is M(t) = t = t/. 

The mean time to the k
th

 repair is k = k. We can rewrite the 

Poisson distribution for the HPP in terms of the MTBF,  : 

 

 

  

 

By multiplying the calculated HPP Poisson distribution 

probabilities for a given failure rate or MTBF by the number of 

systems, we can estimate the expected distribution of failures 

across many similar HPP systems. 

 

6. APPLICATION OF THE HPP MODEL 

 

There were a total of 476 hosts in a large datacenter. By 

determining an overall failure rate or MTBF over the previous 

few months, we checked for the suitability of an HPP model 

that could predict over the next 101 days how many of the 476 

systems would have no failures, one failure, two failures, and 

so on. This prediction was then compared against actual 

failure counts across all systems. 

The model was in excellent agreement with observed results, 

confirming the HPP as shown in Figure 4. Comparison of 

HPP model for each application also showed excellent fit. 

 

 
 

Figure 4. Comparison of HPP Model to Actual Data 

7. CAUSE IMPLICATIONS OF MODEL 

Since the results were consistent with a HPP, the implication 

was that the failure behavior for any system in the datacenter 

derived from a renewal process with a constant failure rate. 

Constant failure rates result from a constant source. There was 

no physical damage to the SRAM by the cause.  The “good as 

new” assumption for a renewal process seemed valid. Failure 

rates were also determined to vary with altitude. Results 

confirmed that the only plausible source was radiation from 

cosmic rays causing single bit parity errors in the e-cache 

memory. Without error corrective actions, failures would 

occur and panic the systems. 

8.PHYSICAL MECHANISM/REMEDIATION 

The radiation environment includes alpha particles and high 

and low energy cosmic rays. Low energy cosmic rays can 

cause 
10

B fission in boron-doped phosphosilicate glass (BPSG) 

dielectric layers of ICs, which generate electron-hole pairs in 

the silicon, disturbing memory bits, and resulting in soft errors. 

The factors that impact soft error rates (SER) are complexity, 

density, lower voltages, higher speeds, and lower cell 

capacitances. The susceptibility to soft error rates for DRAM 

and SRAM has increased with reduced dimensions (higher 

densities) and lowered operating voltages of advancing 

technology. 

In Read-Write activity, the server writes to e-cache memory. 

Memory in e-cache can be saved to permanent memory. If a 

cosmic ray causes a parity error to occur in e-cache and an 

attempt is made to read data in e-cache or to write it to main 

memory, the parity error will be detected and the system will 

panic to prevent data corruption. 

An effective solution was to incorporate mirroring, where 

every byte is duplicated and stored in two locations in SRAM 

along with a parity checker built into the SRAM. The 

confirmation of the solution is graphically shown in Figure 5, 

where a flat line indicates the introduction of the mirrored 

SRAMS and no subsequent e-cache failures over time. 

 
Figure 5. Confirmation of Solution 

 

Application dependence can now be explained. If an 

application writes often to memory but does not read 

frequently, an e-cache error can be overwritten before a read 

cycle sees the error.  Imagine an application updating minutes 

used by a cell phone user.  Consequently, the failure rates will 

be low. If an application reads frequently, then e-cached errors 

will be detected quickly and cause failures. The failure rates 

will be high.  

Until SRAMS were replaced with mirrored SRAMs, “Best 

Practices” were defined based on the modeling. Instead of 

removing a failed board, the most effective action was simply 

to reboot the system.  No physical damage had occurred and 

the probability of a hit by a cosmic ray was purely random. In 
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addition, the costs of replacing boards and subsequent damage 

to the boards or systems (e.g., bent pins) could be avoided.  

9. RECURRENCE ANALYSIS 

The usual assumptions we make for non-repairable 

components is that the times to failure are a true random 

sample from a single population. Consequently, the 

observations are independent and identically distributed. 

The implication is that individual failure times can be 

combined for analysis, neglecting any order of occurrence in 

the original data. [1,2,3] Are these assumptions valid for 

repairable systems? 

Example 1 

 

 New Production Equipment: A new system used in 

manufacturing contained a single, replaceable board. Upon 

failure, repairs were made by replacing the failed board with a 

new board from the same population in stockpile. Engineers 

wanted to model the reliability of the system based on failure 

data obtained during the first 1000 hours of operation.  

Repairs were done at system ages (in hours) 108, 178, 273, 

408, 548, 658, 838, and 988. A dot plot of repair times is 

shown as Figure 6.. 

 

 
 

Figure 6. Dot Plot of Repair Times 

 

The engineers analyzed the system data by taking the failure 

time for each replacement board, that is, the times between 

repairs, and treating those times as a group of independent and 

identically distributed (i.i.d.) observations arising from a 

single population of failure times. The actual order in which 

these times occurred (age of system at repair) was ignored. 

Analysis methods used were: Weibull probability plotting of 

data, parameter estimation, and model fitting. The times 

between repairs are called the interarrival times and are 

calculated in Table 1. 

 
 

Table 1. Interarrival Times for Weibull Analysis 

 

For Weibull analysis, the order of interarrival times is not 

considered. The Weibull probability plot (Figure 7.) in JMP 

shows data points falling close to a straight line. The Weibull 

MLE parameters estimates were: characteristic life  ≈ 136 

hours and a shape parameter  ≈ 4.3. For the Weibull 

distribution,  > 1.0 indicates an increasing hazard rate.  

Engineers concluded times between repairs followed a 

Weibull distribution. Of concern was that the estimated 

Weibull shape parameter, , indicated an increasing “failure 

rate.” The equipment engineers thus felt the machine needed to 

be brought down for additional repair and maintenance before 

“things got much worse”.  

Were these conclusions justified or misleading based on 

analyzing the boards as non-repairable components?  

 

 
Figure 7. Weibull Probability Plot 

 

Analyzing the data as a repairable system and plotting the 

times between failures versus the system age, we see  (Figure 

8.) that actual interarrival times are getting longer. Statistical 

analysis techniques confirm that the observed trend to longer 

times is significant. [2] 

 

 
 

Figure 8. Plot of Times Between Failures Versus Age 

 

Analysis of repairable system data using Weibull analysis 

methods for non-repairable systems produced misleading 

conclusions. Wrong interpretation was caused by the 

engineers’ neglect of the occurrence order of failures in 

Weibull analysis. With correct analysis, engineers avoided 

expensive maintenance actions that were not necessary.  
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Example 2 

 

Locomotive Valve Seat Replacements: Nelson (1995) [5] 

reports recorded valve seat replacements in locomotive 

engines. Treated as non-repairable components, a lognormal 

probability plot in JMP (Figure 9.) of the times between 

failures shows that the data fits a lognormal distribution very 

well.  

 

 
 

Figure 9. Lognormal Probability Plot of Locomotive Repair 

Times 

 

Parameter estimates show hazard rate increasing early in life, 

peaking around 100 days, and then decreasing thereafter. See 

the hazard plot in Figure 10, created in JMP. 

 
Figure 10. Hazard Rate for Lognormal Fit to Locomotive 

Repair Data 

Analysis of valves on locomotive as repairable systems (See 

MCF [4] plot Figure 11.) shows repair rates sharply increasing 

at 500 days. Is wearout occurring? This result totally 

contradicts the original conclusion of a decreasing hazard rate. 

By using the times between failures irrespective of the age of 

the locomotives, we falsely cause the failures to appear as if 

they occur early when in fact the failures are occurring later in 

the life of the product.   

10.SUMMARY 

 

Field failures represent significant inconvenience to 

customers. Field failures remediation efforts are costly to 

system manufacturers. Complex systems make identification of 

causes difficult and challenging. Statistical analysis and 

modeling can provide valuable insights into causes. 

 

 
Figure 11. MCF Rate for Locomotive Repair Data 

 

Analysis of repairable system data using non-repairable 

analysis methods can produce misleading results. For 

repairable systems, analysis of the distribution of failures 

across systems and the time order in which failures occur can 

provide valuable information. For individual systems, a 

cumulative plot shows the repair history graphically. For 

multiple systems, the MCF plot can reveal trends in the 

collective behavior of a group of systems. 
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